In addition to the marked stimulation which magnesium sulplate causes when it is used in dilutions fronim $m=384$ to $m i 524288$, it increases the vitality of the seedlings. The seedlings grown in the rnagnesium sulphate outlived those in the control by two or three weeks, and in some cases by a greater period.

From the foregoing results and conclusions, it is then evident that magnesiunn sulplate, in the absence of other salts, is not necessarily injurious in its effects, but on the other hand may be highly beneficial; while any inhibitory action is due to the presence of a relatively large proportion of nagnesium in the solution.

Lastly the writer wishes to acknowledge the assistance of Dr. Willians J. Gies under whose direction these experinents have been carried on in_{1} the laboratories of the New York Botanical Garden.
[Contribltion from the Division of foons, Bloreal of Chemistry, U. S. Department of Agriciettere].

STUDIES ON APPLE JUICE.

By H. C. (ORF

Received May $1: 9: 9$
Experimental work on the preparation of mifermented apple juice was carried ont during the past season at the large fruit farm of Mr. Isaac Pollard at Nehawka, Nebraska. The restlts of this work are given in the Year-Book of the Departunent of Agriculture for igor. Very briefly the method which was developed for the preparation of the juice consisted first in removing the sediment fronn the juice of the fresh fruit by passing it twice throngh a milk separator. The juice was then carbonated if de. sired, canned, or bottled, and finally sterilized by lieating for slort periods of time at temperatures not exceeding 70°.

Other lines of work relating to apples were carried on at the sante time and as the literature on the chemistry of this important fruit in Anerica is rather meagre, it is believed that the data hore presented will be of in. terest.

Analyses of the following juices were nade:
(a) Juices of the cull apples employed for cider nuaking.
(b) Juices from the cider-mill at varions tinnes during the season.
(c) Jıices of stanclard varieties of apples grown at Nehawha.
(d) Juices of sumnner apples in regard to their valne for vinegar stock.
(e) Juices of decaying apples.

The nethods employed were bricfly as follows : Solids were determined by the Prix spindle. This method las been shown by Drowne to be quite accurate for fruit juices. Determination of acid: ten gram samples of juice were diluted with distilled water, heated to boiling, and titrated witl tenth normal alkali, using plemol phthalein as indicator. Sugars were ${ }^{1}$ This Journal, 23, 875 .

TABI, I
Analinses or Juiches or Culi Apples

Variey amd eondition of sample	late of 1'icking Iy 06		Date of Analysis 1906		Weiglit per apple granls	Solids yer a cent	Acid Mali per cent	Rerlnc. ing Sugar as invert jercent	'rotal Sugar as invert percent		
Maidens' Blush, over-ripe			Ang.		135.9	11.77	. 14	5.74	9.62	3.69	2.20
Porter			$1{ }^{\prime}$		113.3	13.39	. 25	7.06	10.15	2.93	3.06
Wealtliy, over.ripe and undersiz			"	"	95.2	I 1.75	. 27	6.50	9.02	2.39	2.59
Florence crab, over-ripe, very nicaly	Aug		"	"	30.6	16.97	. 57	11.40	11.66	.25	4.45
Dyer, over-ripe			.	"	145.0	14.17	. 43	7.50	10.63	2.97	3.27
Porter, unripe and undersized			.	"	45.0	9.52	. 28	6.04	6.94	. 85	2.35
Auturnn Strawberry			*	24	105.5	11.64	. 22	6.91	9.45	2.41	2.10
Hais			"	"	102.0	12.79	. 59	6.36	9.70	3.17	2.67
Fall Winesap, undersized	Allg		Sept.	2	77.2	13.18	. 64	6.81	10.21	3.23	2.50
Wolf River, wormy.		24		"	275.0	12.93	. 69	6.74	9.59	2.71	2.79
Yound Sweet, wornmy or danaged by hial		28	"	"	220.0	12.63	. 04	7.84	10.25	2.29	2.46
Seek-110-further, undersized		28	"	"	76.0	I 2.64	. 5^{2}	7.27	9.43	2.05	2.80
Ycllow Bellflower, undersized or worniy		29	"	"	146.2	14.09	. 60	7.84	10.66	2.68	2.97
Northern Spy, wormy			"		213.7	13.24	. 69	7.07	10.10	2.88	2.60
Fancuse, undersized.			،	1، ${ }^{\prime}$,	13.67	. 59	833	10.32	1.89	2.86
Shackleford, undersized			"	'	$\cdots \cdot$	11.87	. 42	6.31	8.53	2.01	3.13
White Bellflower, wormy or damaged by his " " undersized			"،	17	121.2	12.42 1 3.06	.54 .46	5.90 7.97	9.25 10.51	3.18 2.41	2.80 2.22
Tolnan, undersized. .			"	,	58	13.07	. 12	7.92	Io. 40	2.36	2.67
Grimes, undersized		12	'	'	60.6	I.3.76	. 47	7.04	10.49	3.28	2.97
Northwestern Greening, worny or danaged bug hail		22	"	28	184.5	12.68	. 44	7.45	9.99	2.41	2.38
Rliode Island Greening, worny		25	"		211.3	12.03	. 50	6.30	10.54	4.03	I. 20
Scott Winter, wormy or damaged by hail	,	.'	"	.	114.3	12.68	1.32	6.26	9.38	2.96	2.14
York Imperial, wormy or undersized	Oct.	2	Oct.	13	79.0	13.15	. 55	7.18	9.85	2.54	2.88
Jonathan, undersized			"		63.6	14.32	. 55	8.50	13.72	4.96	. 31
Missouri, undersize		،	"	"	48.8	16.17	. 74	8.36	12.43	3.87	3.20
Bell Davis, Wormy		5	"	"	101.9	12.45	. 63	6.50	9.50	2.85	2.47
Roman Stell, Wormy	"	6	"	،	99.7	14.17	. 57	6.46	11.35	4.65	2.49
Winesap, Wormy.		1.3		،	97.9	12.85	. 62	7.29	10.09	2.66	2.28
Maximunı						I 6.97	1.32	11.40	13.72	4.96	4.45
Minillulul						9.52	. 0.4	5.74	6.94	. 25	$.31^{1}$
Average....						13.07	. 50	7.20	10.13	2.78	2.58

determined by the gravimetric method, using the tables of Minson and Walker'. and alcohol by the official metlod of the Association of Official Agricultural Chemists: The valuc called undetermined solids is the dif. ference between the solids, and the sum of the acid. reducing sugar, and sucrose.
(a) Culls are apples whicln cannot be marleted, and are, therefore, used by the cider mills. At the packing house, apples were rejected for marlet purposes for a variety of reasons. They were either over-ripe for packing, wormy, or otherwise injured, or under-sized-less than two inches in diameter. Samples of these apples were taken from the packing house as often as new varieties were received. Care was taken in all cases to secure representative samples consisting of about a peck of ap. ples. For analysis the samples were ground in a meat clopper and received in a clotll bag, from which the juice was expressed by pressure. The analyses of the juices are given in Table 1. Generally speaking, the juices of these apples became richer in sugar and acid as the season progressed. The undeternined solids, consisting of nitrogeneous matter, tannin, ether extract, pectin, and asl, remained practically constant during the season. The low value shown for the Jonathan variety is prols. ably due to an error in determining the solids. Attention is called to the higli acid content of the variety Scott's Winter. The variety is unique in this respect. The flavor of the fruit was remarkably slarp, and very agreeable.
(b) The juices from the mill were analyzed at intervals during the season. Like the juices of the cull apples, the mill juices increased gradnally in sugar content and acid. The analyses are given in Table 2. Ow.

TABLE 2
Composition of Mill Jutees

Description Date	Solids	$\begin{aligned} & \text { Acid } \\ & \text { as } \\ & \text { malic } \end{aligned}$	Reducin Sugars as Invert	$\begin{aligned} & g \text { 'rotal } \\ & \text { Sugars } \\ & \text { as lnvert } \end{aligned}$	Sucrose	Indete mined Solids
Destiptor ${ }^{\text {d906 }}$	per ct.	perct.	perct.	per ct.	perct.	per ct.
Early Fall Apples............Aug. ${ }^{\text {a }} 3$. 24	7.02	8.45	I. 34	
'" 27	11.85	$\cdot 36$	7.67	9.46	1.70	2.12
Sept. 5	11.14	. 30	6.38	8.36	I. 88	2.58
	II. 33	. 38	7.50	9.25	1.66	1.79
Largely Grimes Golden...... " 13	12.30	. 24	7.62	10.15	2.40	2.04
" " 27	12.88	. 39	7.72	10.45	2.59	2.18
Largely Ben Davis Oct. ${ }^{2}$	I3.00	. 50	7.82	10.28	2.34	2.34
$\cdots 6$	12.45	. 57	7.01	9.92	2.76	2.11
8	13.40	. 54	$7 \cdot 36$	10.74	3.21	2.29
' 11	13.09	. 52	6.24	Io. Io	3.67	2.66
Maximum	13.40	. 57	7.82	10. 74	3.67	2.66
Minimum	II. 14	. 24	6.24	8.36	I. 34	1.79
Average..................	$12.3{ }^{81}$. 40	7.23	9.72	2.35	2.23^{1}
${ }^{1}$ A verage of 9 determinations.						
${ }^{1}$ This Journal, 28, 663.						

ing to the fact that the nill ran irregularly and that wind-falls and custom apples were constantly being mixed in the bins with the culls from the packing house, no comparison between the composition of the mill juice and that of the juice from cull apples is possible.
(c) Samples of eleven standard varieties grown at Nehawka were secured when the main crop was picked and the juice of the fruit was analyzed when the apples became ripe, that is, when the starch of the ap. ples had practically disappeared. Some samples, indeed, were quite overripe at the time of analysis, showing mealiness or withering, and probably some loss of acidity. The results of these analyses are given in Table 3.

TABLE 3.
Analyses of Juices of Ripf Fall and Winter Apples Grown at Nehawka, Nfb.

	Wt. per Apple Grams.	Solids per cent.	Acid as Malic per cent.	Reducing Sugar as Invert per cent.	Total Sugar as Invert per cent.	Sucrose per cent.	Undeter. mined Solids per cent.
Gano ${ }^{1}$	169.838	6.79	10.27	3.31	
York Imperial	153.6	12.57	.43	7.82	10.84	2.87	I. 45
Arkansas	162.7	13.44	. 45	8.89	11.82	2.78	1.32
Roman Stem ${ }^{1}$.	127.5	14.79	.36	7.64	12.97	5.06	I. 73
Wine Sap.........	112.9	I4.14	.43	8.95	I I. 49	2.41	2.35
Rhode Island Green ing ${ }^{2}$.............	156.0	I 1.99	. 57	7.45	10.26	2.67	1.30
White Winter Pearmain	209.2	I2.59	. 46	5.55	10.95	5. I3	I. 45
Grimes Golden ${ }^{3} . .$.	101.3	13.19	. 28	7.42	12.08	4,43	1.06
Fameuse ${ }^{\text {2 }}$	92.2	13.89	.34	8.87	I 1.50	2.50	2.18
Jonathan'.........	99.8	13.74	. 40	9.65	II 1.93	2.17	1.52
Ben Davis ${ }^{1}$.	157.8	12.02	. 48	7.50	I I 1.25	3.56	. 48
Average		I $3.24{ }^{1}$. 42	7.87	11.40	$3 \cdot 35$	1.48

The average of the analyses in Table 3 is compared in Table 4 with the averages of analyses of juices of Eastern grown apples, compiled by Van Slyke. From the table it will be noted that the solids and sugar content of Nebraska apples are practically the sanie as the solids and sugar content of apples grown in Eastern states. An exception is to be noted, lowever, in the case of the New York apple juices, since these seem to be considerably richer than other apple juices in solids and sugar. The Nebraska apple juices were slightly poorer in acid than juices front the Eastern apples, but this is probably accounted for by the fact that the

[^0]samples analyzed were soncwhat over-ripe, since bos in acidity is linown to oecur anler these conditions.

「ABLE 4
Ayerace Analyses of Appie Jifices from Implerient lochlitits

Locality	Specific Gravity	Solids	$\begin{gathered} \text { Acid } \\ \text { its } \\ \text { Malic } \end{gathered}$	Reducing Sugars	$\underset{\substack{\text { Bugar } \\ \text { Sunert }}}{\text { Sugar }}$	Sucrose	Ash	$\begin{aligned} & \text { Nomber } \\ & \text { of } \\ & \text { Andyeses } \end{aligned}$
Nebraska		I 3.24	4?	7.87	11.40	3.35	..	11
New York ${ }^{1}$	1.064	15.11	. 53	9.28	13.33	3.85	.23	13
Peunsylvania ${ }^{1}$	1.056	15.31	. 58	7.67	11.47	3.6 I	. 28	1 1
Virginia ${ }^{1}$	I. 053	13.31	.52	7.00	10.41	3.35		;
Washington, I).	I.034	I 3.39	$5^{\text {i }}$	6.84	10.00	3.45	. 33	21

(d) Summer apple juices are wot considered by growers to be of value for vinegar stock, owing to the difficulty of preparing a vinegar of stans i. ard strength. The juices are rather low in sugar and the alcoholic fermentation usually takes place at summer temperatures. If the surface of the juice is freely exposed to the air acetic fermentation is alnost sure to develop, since, as is well known, summer temperatares favor the growth of acetic aci! bacteria. Acetic acid. so formed will retard the alcolonic fernentation, or even stop it entircly. This is well kuown from the whe of La Far." The resultant product will contain minfmented sugar, and as the juice originally contaned only barciy enongh sugar for standard vinegar, the rinegar produced will be low in acetic acid.

At Xehawha an opportuluity was offered to stuly two varietics of sulumer apples with regard to their ralue as vinegar stock. Two lots of juice from culls consisting of over-ripe Farly Farvest and Duchess apples were prepared at the mill, and at once poured into clean so gallon tarrels. Foni: barrels of Duchess and two barrels of Early Harvest apple juice were oltained. The barecls were closed with cotton plugs, and the fernentation was carried on in a room at a temperature of abont 70° l... with and withont the addition of pressed yeast in the different experiments. Space was left in cach barrel for the formation of a head. In all cases fermentation set in rapidly. Heads formed which foamed orer, resulting in sme loss of liquid. As soon as the heads subsided fresh cotton phigs wete inserted 50 as to retain the protective layers of carlon dionide gas on the surfaces of the ciders. At the end of twenty days", alcohol, acid, and solids were determined. The analyses of the original juices and those made on the cider are given in Table 5. The results show that nearly the theoretical yield of alcohol can be readily obtained from these juices by fermentation. The nusual loss of acid incident to fermentation of fruit juices 1)y yeast is shown. The addition of pressed yeast increased the
${ }^{1}$ Taken from the summary of analyses compiled by Van Slyke. loc. cit.
${ }^{2}$ Landw. Jb. 1895, 24, 445 .
${ }^{8}$ The fermentation was doubtless completed before this time, but owing to other work the juices were not analysed as soon as dry.
yield of alcohol only slightly. The dry cider obtained could probably have been handled successfully in a quick process generator to produce vinegar of 4 per cent. strength. The vinegar so produced, however, would have been quite low in solids.

TABLE 5.
ANalyses of Fresh and Fermented Juice of Summer Apples.

Description of Sample.	Rate of Analysis 1!00.	Solids. per cent	Acid as malic percent.	Reducing Sugar as per	$\begin{aligned} & \text { Suc. } \\ & \text { Sose } \\ & \text { per } \\ & \text { pert. } \end{aligned}$	$\begin{gathered} \text { Alcohol } \\ \text { GF } \\ \text { 100 } 1 \mathrm{bs} . \end{gathered}$	
Inchess Apple Juice, pressed July 3 I	Aug. 23 ${ }^{1}$	10.54	.75	7.56	. 35	_-	-
Early Harvest apple juice. pressed July 3 I	"،	10.84	. 42	8.06	. 57	--	-
Duchess apple cider, fermented by wild yeast.....	" 20	1. 99	. 28	. 11	-	3.82	-
Duchess apple cider, fer. inented by brewers' yeast.	..	1.61	. 27	. 09	-	4.05	1/8
Duchess apple cider, fermented by brewers' yeast.	"	I. 77	. 3^{8}	. 06	-	4.21	1/4
Duchess apple cider, fer. mented by brewers' yeast.	"	I. 87	. 44	. 04	-	3.81	3/8
E. Harvest apple cider, fermented by wild yeast.....	"	1. 85	. 3 I	. 11	-	4.09	
E. Harvest apple cider, fermented by brewers' yeast.	"	1.55	. 34	. 12	-	$4 \cdot 34$	1/4

(e) This work has its practical significance in that at times when running a cider ninill decayed apples are encountered and it is a question of some inportance as to their value as vinegar stock and as to the influences of decayed apple juice on the juice of sound apples in regard to proper fermentation into vinegar. The question of the wholesomeness of vinegar made fron decayed apple juices is not considered here.

Sample No. 25 was the juice of thoroughly decared sumner apples which were taken from bins at the cider mill. The juice obtained had an odor of acetic acid, but possessed no disagreeable, musty odor or taste. Its analysis is given in Table 6. This sample served to indicate the general character of the changes which ensue on decay. The sucrose originally present was practically all inverted. The total sugar, of which about 8 per cent. was probably present before decay set in, was considerably lessened in amount and 0.75 per cent. alcohol and 0.67 per cent. of acetic acid were found. The character of the changes, therefore, would seem to be similar to those which go on when a fruit juice is fer-
${ }^{1}$ These juices were not analyzed at once, owing to lack of laboratory facili. ties. Samples were therefore preserved by addition of sodium benzoate, and analyzed later. On this account the values for sucrose are probably a little lower, and those for reducing sugars a little higher than the true values, due to inversion of sucrose on standing.
mented into vinegar except that the inversion of the sucrose, the formation of alcolol, and its oxidation into acctic acid so on more or less simultaneously.

TABIIE: 6
Chemical Changes IN Juicle of Dhcaytic Aphles

Serial.		Description of Sample	Date of Analyses ju06	Acicìns Acctic yer ci.			$\begin{gathered} \mathrm{su}- \\ \text { rt crose } \\ \text { perct. } \end{gathered}$	Alcohol gr. per 100 cc .
25	Juice from	1 decayed apples.	Aug. 28	.67	5.6i	5.76	. 09	75
43	" "	soind portions of apples	Sept.	..	$\therefore 5$?	10.13	2.67	none
44	". .	decaved "	\cdots -	.	$\therefore 45$	8.26	. 77	none
67	". ${ }^{\text {a }}$	sound apples	IS	. 22	$\therefore 00$	S. 79	1.70	on
68	" ${ }^{\text {/ }}$	decayed apples	" 1 1s	.1?	7.36	i. 83	. 26	. 28
96	" ${ }^{\prime}$	" ${ }^{\text {a }}$	Oct.	2.18	2.80	2.86	. 06	$4 ;$

samples 43 and $+t$ were juices fron somuld and decayed portions respec. tively of ripe Autumm Strawberry apples. Partly decayed fruit was used and somud and decased sections from opposite sides of each apple were used for the two samples.

These contrasting analyses served to show the character of the first changes which go on in decaying apples. The conspicnous changes were the inversion of sucrose and considerable loss of sugar. No alcohol had as yet been formed. Cinfortinately acid was not determined.

Samples Nos. 67 and 68 were juices from sonnd and decayed apples, te. spectively, selected fronn a lot of over-ripe Autu1111 Strawberry Apples. The analyses show inversion of sucrose in the juice of the decaying ap. ples loss in sugar, and in addition, some fomation of alcohol. They also slow a notable lessening of acid. 入io acidification had as yet set in.

Sample 96 was a sulb-sample fron No. 68 which was allowed to decay further. It showed again, as did sample No. 25 , the composition of decaycd apples but in a more advanced stage. The sucrose was nearly all gone ; there was present sligltitly less than 3 per cent, of reducing sugar, ahont $1 / 2$ per cent. of alcohol, and over 2 per cent. of acetic acid. The presence of acetic acid is known to linder alcololic fermentation, and this accomints for the presence of unfermented sugar. La Far having shown tha:t as little as $1 / 2$ per cent. acetic acid may considerably retard fermentation by yeasts, while I per cent. entirely stopped alcoliolic fermentation in case of 12 out of I_{5} races of yeasts which he studied.

The above analyses indicate the general conrse of the chemical changes which go on in decaying apples. Similar analyses, carried on with mycological control would probably give results of much interest. The tent. dencr of decaying apples to yield juices rich in acetic acid is clearly shown. This fact un11st be considered as affecting unfavorably the value of the juice for vinegar stocks in viey of the tendency of acetic acid to inter-
fere with alcoholic fermentation. In other words the manufacture of a vinegar of standard strength may be seriously affected by an admixture of acetified apple juice with juice of sound apples.

THE ESTIMATION OF CELLULOSE IN WOOD BY THE CHLORINATION METHOD.

By A. L. Dean and G. E. Tower.

The chemical constitution of woody tissues presents a problem of great complexity. Any single sample of wood contains a number of complex compounds whose nature is but little understood. If all kinds of wood were chemically alike, or even if the wood from all parts of the same tree was identical, the study of woody tissue would be simplified. The older idea, especially the idea prevalent amongst botanists, was that the cell walls of woody tissues were composed of "cellulose" which became im. pregnated with "lignin." Later and more careful studies appear to have established the fact that the foundation of woody cell walls is not a simple cellulose, but a compound cellulose, to which the name lignocellulose, has been given. This lignocellulose may be split up into cellulose on the one hand, and the lignone group on the other. The cellulose which result's from the cleavage differs to a marked extent from the normal type cellulose of the cotton fiber. The lignone complex appears to contain cyclical groups and to be related to the carbolydrates in no very definite fashion.

Besides the lignocellulose which makes up the major portion of wood, there are always present a nu111ber of different bodies which are appar. ently not clicmically united to the lignocellulose. Amongst these substances two are prominent ; the so-called wood gum, which may be extracted with cold dilute alkaline solutions, and the group of the ether soluble resins.

It was stated above that the lignocellulose night be split into the two constituent radicals, cellulose and lignone. This cleavage is not easily carried out quantitatively, inasmucli as the treatments which remove the lignone tend to attack the cellulose. The isolation of cellulose from wood is carried out on an enornous scale in the manufacture of paper pulp by the sulphite and soda processes. These methods are said to always involve some loss of cellulose, and unless carefully regulated the loss is likely to be great.

A number of methods have been elaborated for the estimation of the quantities of cellulose in regetable cell walls. They are all tedious, and the cellulose obtained by several of them is apparently a variable and ill defined product. Cross and Bevan ${ }^{1}$ have elaborated a method for the estimation of cellulose in the lignocellulose of jute fiber, a method which
${ }^{1}$ Cellulose: an Outline of the Chemistry of the Structural Elements of Plants. Cross and Bevan, London, 1895.

[^0]: ${ }^{1}$ Mealy.
 ${ }^{2}$ Slightly mealy and slightly withered.
 ${ }^{3}$ Slightly withered.
 ${ }^{4}$ Average of io determinations.
 ${ }^{5}$ N. Y. Exp. Sta. Bull., 258, p. 449.

